Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248185

RESUMO

The microwave absorption performance of high-entropy alloys (HEAs) can be improved by reducing the reflection coefficient of electromagnetic waves and broadening the absorption frequency band. The present work prepared flaky irregular-shaped Al1.5Co4Fe2Cr and Al1.5Co4Fe2Cr@rGO alloy powders by mechanical alloying (MA) at different rotational speeds. It was found that the addition of trace amounts of reduced graphene oxide (rGO) had a favorable effect on the impedance matching, reflection loss (RL), and effective absorbing bandwidth (EAB) of the Al1.5Co4Fe2Cr@rGO HEA composite powders. The EAB of the alloy powders prepared at 300 rpm increased from 2.58 GHz to 4.62 GHz with the additive, and the RL increased by 2.56 dB. The results showed that the presence of rGO modified the complex dielectric constant of HEA powders, thereby enhancing their dielectric loss capability. Additionally, the presence of lamellar rGO intensified the interfacial reflections within the absorber, facilitating the dissipation of electromagnetic waves. The effect of the ball milling speed on the defect concentration of the alloy powders also affected its wave absorption performance. The samples prepared at 350 rpm had the best wave absorption performance, with an RL of -16.23 and -17.28 dB for a thickness of 1.6 mm and EAB of 5.77 GHz and 5.43 GHz, respectively.

2.
Materials (Basel) ; 11(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932164

RESUMO

Nano-Sb2O3 has excellent synergistic flame-retardant effects. It can effectively improve the comprehensive physical and mechanical properties of composites, reduce the use of flame retardants, save resources, and protect the environment. In this work, nanocomposites specimens were prepared by the melt-blending method. The thermal stability, mechanical properties, and flame retardancy of a nano-Sb2O3⁻brominated epoxy resin (BEO)⁻poly(butylene terephthalate) (PBT) composite were analyzed, using TGA and differential scanning calorimetry (DSC), coupled with EDX analysis, tensile testing, cone calorimeter tests, as well as scanning electron microscopy (SEM) and flammability tests (limiting oxygen index (LOI), UL94). SEM observations showed that the nano-Sb2O3 particles were homogeneously distributed within the PBT matrix, and the thermal stability of PBT was improved. Moreover, the degree of crystallinity and the tensile strength were improved, as a result of the superior dispersion and interfacial interactions between nano-Sb2O3 and PBT. At the same time, the limiting oxygen index and flame-retardant grade were increased as the nano-Sb2O3 content increased. The results from the cone calorimeter test showed that the peak heat release rate (PHRR), total heat release rate (THR), peak carbon dioxide production (PCO2P), and peak carbon monoxide production (PCOP) of the nanocomposites were obviously reduced, compared to those of the neat PBT matrix. Meanwhile, the SEM⁻energy dispersive spectrometry (EDX) analysis of the residues indicated that a higher amount of C element was left, thus the charring layer of the nanocomposites was compact. This showed that nano-Sb2O3 could promote the degradation and charring of the PBT matrix, improving thermal stability and flame retardation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...